Upregulation of HNF-1β during experimental acute kidney injury plays a crucial role in renal tubule regeneration.

نویسندگان

  • Koji Ogata
  • Yoshiko Shimamura
  • Kazu Hamada
  • Masayuki Hisa
  • Masayuki Bun
  • Nazuki Okada
  • Kosuke Inoue
  • Yoshinori Taniguchi
  • Masayuki Ishihara
  • Toru Kagawa
  • Taro Horino
  • Shimpei Fujimoto
  • Yoshio Terada
چکیده

Hepatocyte nuclear factor-1β (HNF-1β) is a transcription factor expressed in the kidney, liver, pancreas, and other organs. Mutations of HNF-1β cause maturity-onset diabetes of the young type 5 (MODY5). The aims of this study were to investigate the functional roles of the HNF-1β/suppressor of cytokine signaling-3 (SOCS-3) pathway in tubule damage after acute kidney injury (AKI) both in vivo and in vitro and to examine the effect of HNF-1β on renal tubule formation. To clarify the significance of the HNF-1β/SOCS-3 pathway in AKI, we used a rat ischemia/reperfusion (I/R) AKI model and cultured renal tubular cells (NRK-52E cells). Western blot analysis showed that HNF-1β and polycystic kidney disease 2 (PKD2) expressions were increased at 3-12 h and 12-24 h after I/R, respectively. The expression level of SOCS-3 was decreased at 3-48 h. Immunohistological examination revealed that expression of HNF-1β was increased in proximal tubules. Overexpression of HNF-1β resulted in decreased SOCS-3 expression, activation of signal transducer and activator of transcription 3 (STAT3) and Erk, and increased [(3)H]thymidine uptake in the presence of hepatocyte growth factor. Furthermore, tubule formation in three-dimensional gels was inhibited by dominant-negative HNF-1β. Our study shows that HNF-1β is upregulated after AKI in proximal tubular cells and that HNF-1β controls cellular proliferation and tubule formation by regulating SOCS-3 expression and STAT3/Erk activation. Therefore, the current study unravels the physiological and pathological significance of the HNF-1β pathway in AKI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear factor erythroid-2 related factor 2 overexpressed mesenchymal stem cells transplantation, improves renal function, decreases injuries markers and increases repair markers in glycerol-induced Acute kidney injury rats

Objective(s):Recently cell therapy is a promising therapeutic modality for many types of disease including acute kidney injury (AKI). Due to the unique biological properties, mesenchymal stem cells (MSCs) are attractive cells in this regard. This study aims to transplant MSCs equipped with nuclear factor E2-related factor 2 (Nrf2) in rat experimental models of acute kidney and evaluate regenera...

متن کامل

Hnf-1β Transcription Factor Is an Early Hif-1α-Independent Marker of Epithelial Hypoxia and Controls Renal Repair

Epithelial repair following acute kidney injury (AKI) requires epithelial-mesenchyme-epithelial cycling associated with transient re-expression of genes normally expressed during kidney development as well as activation of growth factors and cytokine-induced signaling. In normal kidney, the Hnf-1β transcription factor drives nephrogenesis, tubulogenesis and epithelial homeostasis through the re...

متن کامل

Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells

Tubular epithelial cells (TECs) can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated T...

متن کامل

Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway.

The apoptotic or necrotic death of renal tubule epithelial cells is the main pathogenesis of renal ischemia-reperfusion-induced acute kidney injury (AKI). Pyroptosis is a programmed cell death pathway that depends on the activation of the caspase cascade and IL-1 cytokine family members. However, the role of pyroptosis in AKI induced by ischemia-reperfusion remains unclear. In this study, we fo...

متن کامل

The role of hormones in renal disease and ischemia-reperfusion injury

The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 303 5  شماره 

صفحات  -

تاریخ انتشار 2012